Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means

نویسندگان

  • Wei-Mao Qian
  • Yu-Ming Chu
چکیده

*Correspondence: [email protected] 2School of Mathematics and Computation Science, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article Abstract In this paper, we present sharp bounds for the two Neuman means SHA and SCA derived from the Schwab-Borchardt mean in terms of convex combinations of either the weighted arithmetic and geometric means or the weighted arithmetic and quadratic means, and the mean generated either by the geometric or by the quadratic mean. MSC: 26E60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Yang Means Iii

Optimal inequalities involving the p-Yang means are established. Bounding quantities are either the arithmetic or geometric or the harmonic combinations of the p-geometric and the p-quadratic means.

متن کامل

A remark on the means of the number of divisors

‎We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$‎, ‎where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$‎, ‎with $d(n)$ denoting the number of positive divisors of $n$‎. ‎Also‎, ‎we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.

متن کامل

Optimal convex combination bounds of geometric and Neuman means for Toader-type mean

In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text], [Formula: see text] , [Formula: see text] and [Formula: see text] , where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] are the Toader, geometric, arithmetic and two Neu...

متن کامل

Refinements of Bounds for Neuman Means in Terms of Arithmetic and Contraharmonic Means

In this paper, we present the sharp upper and lower bounds for the Neuman means SAC and SCA in terms of the the arithmetic mean A and contraharmonic mean C . The given results are the improvements of some known results. Mathematics subject classification (2010): 26E60.

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014